

## Thermoacoustic heat pumps

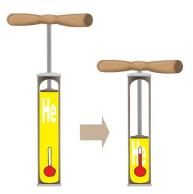
Simon Spoelstra

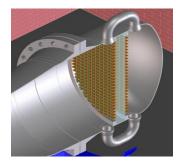
Nijkerk 26 May 2015

www.ecn.nl



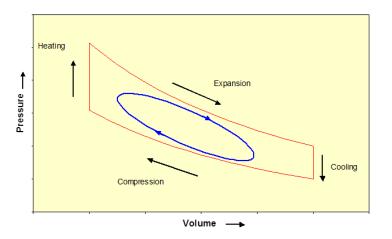
### Content


- Technology
- Applications
- Economics
- Status & Outlook






### Thermoacoustics


- Generate acoustic power from temperature differences (engine)
- Pump heat across temperature differences with acoustic power (heat pump)
- Thermodynamically idential to Stirling cycle but without the moving parts
- Typical operating conditions
  - 30 100 Hz, 40 bar Helium
  - Operating temperature -100°C till 600°C
  - Temperature lifts 10°C till 100°C



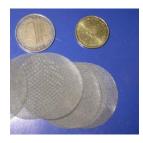


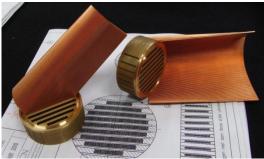


## Thermodynamic cycle



Stirling cycle  $\Rightarrow$  Carnot efficiency





### Thermoacoustic system components

#### Regenerator

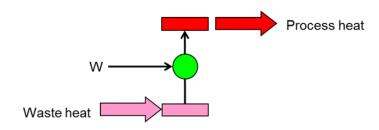
- Porous, low conductivity, high heat exchange, low pressure drop
- Heat exchangers
  - High heat transfer, low pressure drop
- Acoustic circuit
  - Timing of process
- Resonator
  - Pressure vessel, resonance frequency
- Driver
  - Depending on application
  - Electro-acoustic transducer



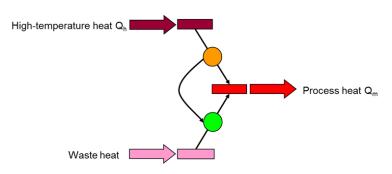




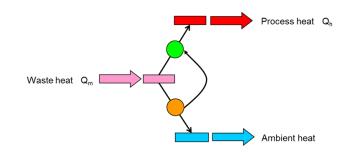



## **Characteristics TA-heat pump**

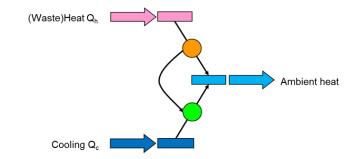
- Stirling cycle
- No phase transition of working medium
- Flexible on temperature level of heat delivery (no theoretical limit)
- Flexible on temperature lifts (up till 100°C)
- No/few moving parts (resulting in low maintenance)
- Environmentally friendly working medium (helium)
- Simple materials, no high tolerances, providing good economy
- Can be vertically placed, resulting in a small footprint.




# Applications


• Electrically driven heat pump

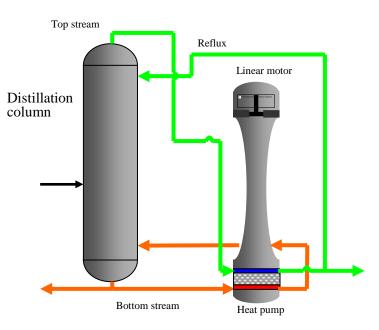



 High-temperature heat (burner) driven heat pump



• Waste heat driven heat transformer

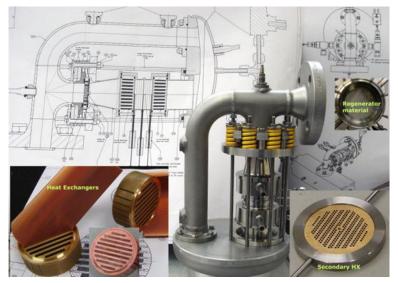



Waste heat driven cooler





## Electrically driven TA heat pump


- Suitable for wide range of waste heat temperatures
- Flexible with respect to temperature lifts
- Applicable in chemical, refining, paper and food industry
- Major components
  - Resonator
  - Regenerator
  - Heat exchangers
  - (Linear) compressor
- Example: distillation column





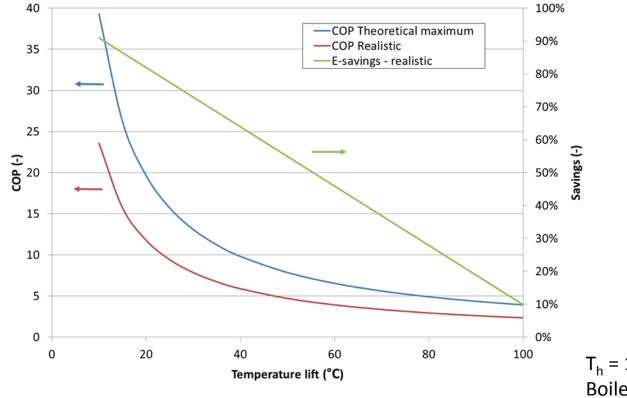
## Testing of electrically driven TA system

#### Labscale



#### Tested for

- 10 80°C
- 50 100°C
- 80 140°C
- Efficiencies nearing 40% of Carnot


#### Benchscale



#### Testing currently underway



### Heat pump efficiency & savings



 $T_h = 120^{\circ}C$ Boiler efficiency = 85 % Power station efficiency = 40%



### Economics – business case

|                                         | Boiler | Heat pump |
|-----------------------------------------|--------|-----------|
| Waste heat temperature (°C)             |        | 120       |
| Process heat temperature (°C)           |        | 180       |
| Heat demand (MW)                        | 30     |           |
| Running hours (hr/year)                 | 8000   |           |
| Efficiency/COP (-)                      | 0.85   | 4         |
| Investment (M€)                         |        | 22.5      |
| Electricity costs (M€/year)             |        | 3.0       |
| Insurance & Maintenance costs (M€/year) |        | 0.9       |
| Savings on fuel (M€/year)               |        | 8.54      |
| Cash flow (M€/year)                     |        | 4.6       |
| Simple payback time (years)             |        | 4.9       |




### Status and Outlook

• Further technology development (2-3 years)

- Controllability
- Scale effects
- Durability tests
- Field testing
- Reduce cost of manufacturing
- Scaling (next)
  - 100 kW (field testing)
  - 100 kW-1 MW (demo)
  - > 1 MW (commercial, dependent on market)


# Power scale increased from 100 W to 10 kW





## Thanks for your attention











