

Energy Transition & Renewable Energy Hydrogen Generation & Electrical Design Challenges McDermott - NAP Studium Generale Energie Transitie

Preface

Energy transition are not new, they have been going for a long time and unfold over time. Previous energy transition have primarily been driven by technology, economics, environmental considerations & convenience and ease. The current one has politic, policy and activism more mixed in.

The European Union set a 2050 decarbonization target in the Paris Agreement to reduce carbon emissions by 90–95% relative to 1990 emission levels. The path toward achieving those deep decarbonization targets can take various shapes but will surely include a portfolio of economy-wide low-carbon energy technologies

Taking full advantage of renewable energy sources requires innovations in producing, storing and delivering electricity. That make the power grid the backbone of energy transition and bring further challenges of power grid balancing, operation, security and stability.

Energy challenge

Increasing population and energy demand

2015 **TTTTTT**

2100 **İİİİİİİİ**İİ

7+bn

WORLD POPULATION

~500

EXAJOULESENERGY CONSUMPTION PER YEAR

10bn

~1.000

WORLD POPULATION

EXAJOULESENERGY CONSUMPTION PER YEAR

Double world energy usage

Challenges of Electrification\ Decarbonization & using Existing Grid

Firm and flexible renewable power generation resources

Electricity storage (Power to gas, Hydrogen)

Energy balancing (generation = demand)

Power grid stability (reserve power resources)

Power efficiency and quality

Future role of H2: complementary to electricity for decarbonisation

Generation - Transmission - Storage - Applications

Impact on power systems planning

 Location, type and operational mode of new electrolysers is a strategic system architecture question

Near to Consumers

For Example: Ammonia Feedstock

https://www.weforum.org/agenda/2021/01/green-ammonia-stop-fossil-fuels/

Near to renewable energy source

A rendering of an offshore green-hydrogen platform. Photo: Tractebel

Example: PEM Plant Typical Layout (1GW)

McDermott Copyright

Challenge: Utility Grid – Power Connection

Challenge: Typical electrical configuration & redundancy depend on sizing of Plant

PCC

Utility Grid

Main

Electricity scheme A (Redundancy N)

Pros

 High over all efficiency due to higher equipment utilization.

Lower CAPEX cost.

Cons

- Low redundancy, required very high reliability of equipment.
- Single point of failure cause large contingency for the power grid, increase grid security cost.

Electricity scheme B (Redundancy N-1)

Pros

- Higher redundancy. No single point of failure.
- Flexible operation and maintenance capability.

Cons

- Higher CAPEX cost.
- Lower over all efficiency due to reduce equipment utilization.

AC switchboard room

Challenge: Sizing of Electrolyzer Stack & Monitoring power consumption @EOL

Scenario 1: replacing all at end of year 10

Scenario 2: replacing 4 arrays every year

Scenario 3: Start from end of year 3, replacing 5 arrays every year

Scenario 4: Start from end of year 5, replacing 6 arrays every year

Scenario 5: Start from end of year 6, replacing 8 arrays every year

Scenario 6: replacing 20 arrays at year 9 and 10

Example: 10MW array of PEM electrolyzer

Electrolyzer Array Replacement Scenarios

Challenge: Balance of Plant (BOP) Vs Balance of system (BOS)

Example: PEM Plant Typical Layout (1GW)

Challenge: Emergency Power Supply (EDG vs Fuel Cell)

Fuel Cell

Emergency Power Supply

For further information on the content of this presentation, please get in contact:

Ahmed Labib, CEng MBA MSc Eng ahmed.labib@mcdermott.com

Thank you for listening...