Nieuwe gevaren van de Energie Transitie

NAP bijeenkomst Houten

Voor NAP SIG Process Safety, Tijs Koerts

Technology will solve things....

Paris

1.5 degree; 2.0 degree

How much more CO2 can we emit and by when is that expected?

Paris

1.5 degree; 2.0 degree

How much more CO2 can we emit and by when is that expected?

How many earth consume the Dutch?

EPSC WG Focus topics

Batteries

Decarbonization

Hydrogen

Color

GREY HYDROGEN BLUE HYDROGEN

SMR or gasification

(85-95%)

with carbon capture

TURQUOISE HYDROGEN GREEN HYDROGEN

Pyrolysis

Electrolysis

Process

SMR or gasification

Produced from CH₄ and H₂O using water gas shift (eventually with CCS), CH₄ pyrolysis or electrolysis from green electricity.

H2 is weight effective energy carrier, easy to produce electricity. Flammable and hard to liquify. Transport in pipelines or e.g. as NH₃ (I) in vessels

Electrolyser parks to be developed, constructed and operated

New Hazards: hydrogen is flammable, easy ignitable. Membrane permeation

Reference: Presentation RHDHV

Hydrogen Hazards

Hydrogen Hazards

Explosion behavior of Hydrogen vs Natural Gas

Estimate overall energy efficiency

Using Solar Energy from Egypt, to drive a car in Europe:

Photons \rightarrow Electricity \rightarrow H₂ \rightarrow NH₃(I) \rightarrow Transport by boat \rightarrow NH₃ storage \rightarrow H₂ \rightarrow pipeline \rightarrow Load to Car \rightarrow electricity (fuel cell) \rightarrow speed (car)

Electricity storage Li Battery

Thermal runway

Li batteries runaway

1 Electrical

4

2 Thermal

3 Electrochemistry

- Overcharge
- Cell external short circuit, sparks
- · BMS failure
- Electrical abuse
- High voltage/current
- Permanent energy

- Cell over-temperature
- Internal heat production and dissipation
- Insulation failure
- Condensation/Corrosion
- Thermal regulation failure
- · Harsh climatic conditions

- · Cell casing rupture
- Electrolyte spillage
- Volatile organic solvents spillage
- · Internal cell short-circuit

4 Thermal runaway

- Parts ejection
- Internal fire ignition & propagation
- Gas & toxic fumes emissions
- · Explosive atmosphere

Bio Gas

Sources: Crop residues, Municipal solid waste, Wastewater, Woody, Animal manure

Process: Anaerobe Fermentation of organics.

New Hazards: hazardous chemicals (H₂S, CO, CH₄, CO₂, solvents). Chemical processes in less industrialized environment. Inert atmosphere. Few bar over pressure.

Biogas cleaning

Wind

Plastics Pyrolysis

For plastics like PP, PE, PS Energy intensive

Plastics decomposition in inert atmosphere e.g. 410 °C & 8 Barg to become a feedstock (pyrolysis oil)

Product quality related to contaminants like: N, O, S, Cl, metals, double bonds,

Hydro treatment (hydrogenation) required to

- <u>Problems</u>: Gum formation, fouling, corrosion, catalyst poisoning
- \rightarrow Hazards: high pressure hydrogen, plugged equipment, corrosion leakages, O₂ injection

Thank you for your attention

